Growth and yield responses of rice to carbon dioxide concentration

Abstract
SUMMARY: Rice plants (Oryza salivaL., cv. IR30) were grown in paddy culture in outdoor, naturally sunlit, controlled-environment, plant growth chambers at Gainesville, Florida, USA, in 1987. The rice plants were exposed throughout the season to subambient (160 and 250), ambient (330) or superambient (500, 660, 900 μmol CO2/mol air) CO2concentrations. Total shoot biomass, root biomass, tillering, and final grain yield increased with increasing CO2concentration, thegreatest increase occurring between the 160 and 500 μmol CO2/mol air treatments. Early in the growing season, root:shoot biomass ratio increased with increasing CO2concentration; although the ratio decreased during the growing season, net assimilation rate increased with increasingCO2concentration and decreased during the growing season. Differences in biomass and lamina area among CO2treatments were largely due to corresponding differences in tillering response. The number of panicles/plant was almost entirely responsible for differences in final grain yield among CO2treatments. Doubling the CO2 concentration from 330 to 660 μmol CO2/mol air resulted in a 32 % increase in grain yield. These results suggest that important changes in the growth and yield of rice may be expected in the future as the CO2concentration of the earth's atmosphere continues to rise.

This publication has 30 references indexed in Scilit: