Approximation Results for Orthogonal Polynomials in Sobolev Spaces
Open Access
- 1 January 1982
- journal article
- Published by JSTOR in Mathematics of Computation
- Vol. 38 (157) , 67-86
- https://doi.org/10.2307/2007465
Abstract
We analyze the approximation properties of some interpolation operators and some <!-- MATH $L_\omega ^2$ --> -orthogonal projection operators related to systems of polynomials which are orthonormal with respect to a weight function <!-- MATH $\omega ({x_1}, \ldots ,{x_d})$ --> , <!-- MATH $d \geqslant 1$ --> . The error estimates for the Legendre system and the Chebyshev system of the first kind are given in the norms of the Sobolev spaces <!-- MATH $H_\omega ^s$ --> . These results are useful in the numerical analysis of the approximation of partial differential equations by spectral methods.
Keywords
This publication has 13 references indexed in Scilit:
- Function SpacesPublished by Walter de Gruyter GmbH ,2012
- Spectral and Pseudo-Spectral Approximations of the Navier–Stokes EquationsSIAM Journal on Numerical Analysis, 1982
- Error Estimates for Spectral and Pseudospectral Approximations of Hyperbolic EquationsSIAM Journal on Numerical Analysis, 1982
- Legendre and Chebyshev spectral approximations of Burgers' equationNumerische Mathematik, 1981
- Spectral and pseudo-spectral methods for parabolic problems with non periodic boundary conditionsCalcolo, 1981
- Stability of the Fourier MethodSIAM Journal on Numerical Analysis, 1979
- $C^m$ Convergence of Trigonometric InterpolantsSIAM Journal on Numerical Analysis, 1978
- Semi-Groups of Operators and ApproximationPublished by Springer Nature ,1967
- Sur Une Classe D’Espaces D’InterpolationPublications mathématiques de l'IHÉS, 1964
- Intermediate spaces and interpolation, the complex methodStudia Mathematica, 1964