Cloning and Functional Expression of aDrosophilaMetabotropic Glutamate Receptor Expressed in the Embryonic CNS

Abstract
The excitatory neurotransmitter glutamate plays important roles in the mammalian brain, ranging from synaptic plasticity to memory. To mediate these functions, glutamate activates two types of receptors: ligand-gated channels and metabotropic receptors coupled to G-proteins. Both families of glutamate receptors share no sequence homology and possess original structural features compared with other ligand-gated channels and G-protein-coupled receptors, respectively. Glutamate-gated receptor-channel subunits have already been characterized in invertebrates. Here we report the cloning and functional characterization of an invertebrate metabotropic glutamate receptor (DmGluRA) isolated fromDrosophila melanogaster. This receptor displays 45 and 43% amino acid sequence identity with its mammalian homologs mGluR3 and mGluR2, respectively. Moreover, its pharmacology and transduction mechanisms are surprisingly similar to those of mGluR2 and mGluR3. DmGluRA is expressed in the CNS of the late embryo. These results indicate that the original structural features of both glutamate receptor types are conserved from insects to mammals and suggest that the functions of these receptors have been highly conserved during evolution.