Optical properties of quantum-wire arrays in (Al,Ga)As serpentine-superlattice structures
- 15 September 1993
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 48 (11) , 8047-8060
- https://doi.org/10.1103/physrevb.48.8047
Abstract
Serpentine superlattices with a built-in quantum-wire array have been grown on vicinal (100) GaAs substrates by molecular-beam epitaxy. The quantum wires have parabolic cross sections with confinement dimensions on the order of 100 Å. The goal of this paper is to make a comprehensive optical study of two different serpentine-superlattice samples. The serpentine structures have been characterized by low-temperature cathodoluminescence, photoluminescence, and photoluminescence-excitation measurements. In photoluminescence, a rather sharp peak (typically 7 meV full width at half maximum) is attributed to excitonic recombination in the built-in quantum-wire array. The linear polarization dependence of the serpentine-superlattice emission has been measured with a photoelastic modulation technique, showing a pronounced polarization anisotropy in both photoluminescence and photoluminescence excitation. The serpentine-superlattice photoluminescence emission normal to the vicinal surface shows a linear polarization along the wires of up to about 30% due to the lateral confinement. The carrier confinement has been further characterized by measuring the linear polarization dependence of the photoluminescence normal to the cleaved edges. The measured polarization anisotropy has been compared with the calculated polarization dependence as a function of intermixing between the lateral barriers and wells. It is found that there is a substantial intermixing between the barriers and wells, with at least 30% of the Al intended for the barrier ending up in the well.Keywords
This publication has 44 references indexed in Scilit:
- Observation of quantum confinement by strain gradientsPhysical Review Letters, 1991
- Quantum confined one-dimensional electron-hole plasma in semiconductor quantum wiresPhysical Review Letters, 1991
- Theory of optical anisotropy in quantum-well-wire arrays with two-dimensional quantum confinementPhysical Review B, 1991
- Clear energy level shift in ultranarrow InGaAs/InP quantum well wires fabricated by reverse mesa chemical etchingApplied Physics Letters, 1991
- Optical properties of III–V semiconductor quantum wires and dotsJournal of Luminescence, 1990
- One-dimensional magneto-excitons in GaAs/As quantum wiresPhysical Review Letters, 1989
- Stimulated emission in semiconductor quantum wire heterostructuresPhysical Review Letters, 1989
- Molecular-beam epitaxy growth of tilted GaAs/AlAs superlattices by deposition of fractional monolayers on vicinal (001) substratesJournal of Vacuum Science & Technology B, 1988
- Compositional Disordering of GaAs-AlxGa1-xAs Superlattice by Ga Focused Ion Beam Implantation and its Application to Submicron Structure FabricationJapanese Journal of Applied Physics, 1985
- Scattering Suppression and High-Mobility Effect of Size-Quantized Electrons in Ultrafine Semiconductor Wire StructuresJapanese Journal of Applied Physics, 1980