Artificial Dendritic Trees
- 1 July 1993
- journal article
- research article
- Published by MIT Press in Neural Computation
- Vol. 5 (4) , 648-664
- https://doi.org/10.1162/neco.1993.5.4.648
Abstract
The electronic architecture and dynamic signal processing capabilities of an artificial dendritic tree that can be used to process and classify dynamic signals is described. The electrical circuit architecture is modeled after neurons that have spatially extensive dendritic trees. The artificial dendritic tree is a hybrid VLSI circuit and is sensitive to both temporal and spatial signal characteristics. It does not use the conventional neural network concept of weights, and as such it does not use multipliers, adders, look-up-tables, microprocessors, or other complex computational units to process signals. The weights of conventional neural networks, which take the form of numerical, resistive, voltage, or current values, but do not have any spatial or temporal content, are replaced with connections whose spatial location have both a temporal and scaling significance.This publication has 6 references indexed in Scilit:
- Target tracking using impulsive analog circuitsPublished by SPIE-Intl Soc Optical Eng ,1992
- Calcium currents and graded synaptic transmission between heart interneurons of the leechJournal of Neuroscience, 1991
- Comparisons between Active Properties of Distal Dendritic Branches and Spines: Implications for Neuronal ComputationsJournal of Cognitive Neuroscience, 1989
- Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing.Proceedings of the National Academy of Sciences, 1983
- Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices.The Journal of Physiology, 1980