Physical Mechanisms for the Association of El Niño and West African Rainfall with Atlantic Major Hurricane Activity

Abstract
Physical mechanisms responsible for the contemporaneous association, shown in earlier studies, of North Atlantic basin major hurricane (MH) activity with western Sahelian monsoon rainfall and an equatorial eastern Pacific sea surface temperature index of El Niño are examined, using correlations with 200- and 700-mb level wind data for the period 1968–92. The use of partial correlations isolates some of the relationships associated with the various parameters. The results support previous suggestions that the upper- and lower-level winds over the region in the basin between ∼10° and 20°N where most MHs begin developing are critical determinants of the MH activity in each hurricane season. In particular, interannual fluctuations in the winds that produce changes in the magnitude of vertical shear are one of the most important factors, with reduced shear being associated with increased activity and stronger shear with decreased activity. The results show that most of these critical wind fluctuations... Abstract Physical mechanisms responsible for the contemporaneous association, shown in earlier studies, of North Atlantic basin major hurricane (MH) activity with western Sahelian monsoon rainfall and an equatorial eastern Pacific sea surface temperature index of El Niño are examined, using correlations with 200- and 700-mb level wind data for the period 1968–92. The use of partial correlations isolates some of the relationships associated with the various parameters. The results support previous suggestions that the upper- and lower-level winds over the region in the basin between ∼10° and 20°N where most MHs begin developing are critical determinants of the MH activity in each hurricane season. In particular, interannual fluctuations in the winds that produce changes in the magnitude of vertical shear are one of the most important factors, with reduced shear being associated with increased activity and stronger shear with decreased activity. The results show that most of these critical wind fluctuations...