The population genetics of parthenogenetic strains of Drosophila mercatorum
- 1 January 1973
- journal article
- Published by Springer Nature in Theoretical and Applied Genetics
- Vol. 43 (5) , 204-212
- https://doi.org/10.1007/bf00309135
Abstract
A one locus model has been developed to describe parthenogenetic populations restoring diploidy by central fusion, terminal fusion and gamete duplication. It was found that in the absence of selection all populations become homozygous. With selection, however, it is possible to maintain heterozygotes and homozygotes. The conditions required to yield such an equilibrium are a function of (1) the proportions of the various diploid restoring mechanisms (2) linkage to the kinetochore and (3) the intensity of selection. The model was then used to derive one-generation likelihood functions. These likelihoods were used in deriving estimation procedures for the frequency of gamete duplication which is important in forming isogenic lines and for the probability of a heterozygous female giving rise to a heterozygous zygoid. Next, n-generation likelihood functions with and without selection were calculated. These were used to estimate the selection coefficient and to derive two tests of the hypothesis of no selection versus the hypothesis of selection. The first test is a locally best test in the vicinity of no selection, and the second an “odds” for the hypotheses using a prior distribution on the selection coefficient.Keywords
This publication has 3 references indexed in Scilit:
- Monte Carlo MethodsPublished by Springer Nature ,1964
- POPULATION STUDIES IN PREDOMINANTLY SELF-POLLINATED SPECIES, I. EVIDENCE FOR HETEROZYGOTE ADVANTAGE IN A CLOSED POPULATION OF BARLEYProceedings of the National Academy of Sciences, 1960
- Radiation damage to the genetic material.1950