Numerical renormalization-group study of the correlation functions of the antiferromagnetic spin-1/2 Heisenberg chain

Abstract
We use the density-matrix renormalization-group technique developed by White to calculate the spin correlation functions 〈Sn+lz Snz〉=(-1)lω(l,N) for isotropic Heisenberg rings up to N=70 sites. The correlation functions for large l and N are found to obey the scaling relation ω(l,N)=ω(l,∞)fXYα(l/N) proposed by Kaplan et al., which is used to determine ω(l,∞). The asymptotic correlation function ω(l,∞) and the magnetic structure factor S(q=π) show logarithmic corrections consistent with ω(l,∞)∼a√lncl /l, where c is related to the cut-off dependent coupling constant geff(l0)=1/ln(cl0), as predicted by field theoretical treatments.
All Related Versions