Development of a scalable process for high‐yield lentiviral vector production by transient transfection of HEK293 suspension cultures
- 20 July 2009
- journal article
- research article
- Published by Wiley in The Journal of Gene Medicine
- Vol. 11 (10) , 868-876
- https://doi.org/10.1002/jgm.1370
Abstract
Background Lentiviral vectors (LV) offer several advantages over other gene delivery vectors. Their potential for the integration and long-term expression of therapeutic genes renders them an interesting tool for gene and cell therapy interventions. However, large-scale LV production remains an important challenge for the translation of LV-based therapeutic strategies to the clinic. The development of robust processes for mass production of LV is needed. Methods A suspension-grown HEK293 cell line was exploited for the production of green fluorescent protein-expressing LV by transient polyethylenimine (PEI)-based transfection with LV-encoding plasmid constructs. Using third-generation packaging plasmids (Gag/Pol, Rev), a vesicular stomatitis virus G envelope and a self-inactivating transfer vector, we employed strategies to increase volumetric and specific productivity. Functional LV titers were determined using a flow cytometry-based gene transfer assay. Results A combination of the most promising conditions (increase in cell density, medium selection, reduction of PEI–DNA complexes per cell, addition of sodium butyrate) resulted in significantly increased LV titers of more than 150-fold compared to non-optimized small-scale conditions, reaching infectious titers of approximately 108 transducing units/ml. These conditions are readily scalable and were validated in 3-liter scale perfusion cultures. Conclusions Our process produces LV in suspension cultures and is consequently easily scalable, industrially viable and generated more than 1011 total functional LV particles in a single bioreactor run. This process will allow the production of LV by transient transfection in sufficiently large quantities for phase I clinical trials at the 10–20-liter bioreactor scale. Copyright © 2009 John Wiley & Sons, Ltd.Keywords
This publication has 65 references indexed in Scilit:
- Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfectionBlood, 2009
- An efficient and scalable process for helper‐dependent adenoviral vector production using polyethylenimine‐adenofectionBiotechnology & Bioengineering, 2008
- Imaging the biogenesis of individual HIV-1 virions in live cellsNature, 2008
- High-titer, serum-free production of adeno-associated virus vectors by polyethyleneimine-mediated plasmid transfection in mammalian suspension cellsBiotechnology Letters, 2007
- Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectivesBiotechnology Letters, 2007
- Gene transfer in humans using a conditionally replicating lentiviral vectorProceedings of the National Academy of Sciences, 2006
- Cell Culture Processes for the Production of Viral Vectors for Gene Therapy PurposesCytotechnology, 2006
- Comparison of Transfection Conditions for a Lentivirus Vector Produced in Large VolumesHuman Gene Therapy, 2003
- A Stable System for the High-Titer Production of Multiply Attenuated Lentiviral VectorsMolecular Therapy, 2000
- Modification of the phenotype of murine sarcoma virus-transformed cells by sodium butyrate: Effects on morphology and cytoskeletal elementsExperimental Cell Research, 1976