Abstract
The binding of the local anesthetics tetracaine and procaine with multilamellar dispersions of egg phosphatidylcholine has been studied by 2H nuclear magnetic resonance (NMR). The 2H-NMR line shapes of specifically deuterated local anesthetics are found to be very dependent on the attainment of a true equilibrium. The equilibrium could be most properly reached by the use of repeated freeze–thaw–vortex cycles. The data for tetracaine are consistent with the three-site exchange model proposed earlier. Tetracaine is in slow exchange between a strongly bound site and a weakly bound site and in fast exchange between the weakly bound site and free in solution. The slow exchange rate is estimated, from temperature and dilution studies, to be approximately 1.5 × 103 s−1 at pH 5.5 and slightly faster at pH 9.5. Comparisons of the quadrupole splittings with those seen for our earlier work in egg phosphatidylethanolamine suggest that the location of the strongly bound site in phosphatidylcholine is dependent on the anesthetic charge. This is in contrast to egg phosphatidylethanolamine, where molecular shapes appear to be the determining factor for the location of the anesthetic. Procaine bound very weakly to the model membranes, to yield only a broad resonance and no quadrupole splitting. It appears that procaine, unlike tetracaine, is not bound by the ordered acyl chains.

This publication has 10 references indexed in Scilit: