Shell-Model Calculations of the Lowest-Energy Nuclear Excited States of Very High Angular Momentum
- 20 May 1967
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 157 (4) , 832-847
- https://doi.org/10.1103/physrev.157.832
Abstract
A combinatorial calculation is used to estimate the few (about ten) lowest-energy nuclear excited states at every angular momentum, out to very large angular momenta (e.g., out to about ). It is useful to have these estimates to interpret many nuclear reactions, especially reactions induced by heavy ions and proceedings through the compound-nucleus mechanism. The calculation is based on a spherical shell model of fermions assumed to be noninteracting, except that pairing forces are taken into account. Several calculated examples are given. It is found that the division of nuclear excitation energy into "thermall" and "rotational" energies in computing level densities may not be very useful near to or far from closed shells, but may accidentally be useful for some intermediate cases. For convenience, however, the calculated levels can be thought of as embodying simultaneously the effects of pairing energy, rotational energy, and shell closure, which are often introduced separately and ad hoc into analyses of nuclear reaction data. The rate of increase of the nuclear level density at energies just above the lowest excited level at every angular momentum also depends sensitively on the proximity of the nucleus to closed shells. The "brute-force" calculation described here is only practicable if the energies of very many configurations can be computed and compared in a short time, a circumstance facilitated by use of a spherical model nuclear potential. However, it is found that an extension of this type of calculation to include nonspherical potentials should be feasible. Since, in discussing many nuclear reactions, it is necessary to call attention repeatedly to the lowest excited level at every angular momentum, it is desirable to give these levels a special name. It has been proposed that the lowest-energy excited state at a given angular momentum be called "yrast" level for that angular momentum.
Keywords
This publication has 29 references indexed in Scilit:
- De-Excitation of Highly Excited NucleiPhysical Review B, 1967
- Dissipation of Energy and Angular Momentum by Emission of Neutrons and Gamma RaysPhysical Review B, 1967
- Study of the Reactions and by Means of Recoil TechniquesPhysical Review B, 1962
- Effects of Angular Momentum and Gamma-Ray Emission on Excitation FunctionsPhysical Review B, 1962
- Gamma-Ray Emission from Compound Nucleus Reactions of Helium and Carbon IonsPhysical Review B, 1962
- Effect of Competition between Gamma-Ray and Particle Emission on Excitation FunctionsPhysical Review B, 1961
- Reactions of Alpha Particles with Iron-54 and Nickel-58Physical Review B, 1961
- Fast Neutron Capture below 1 MeV: The Cross Sections for238U and232ThProceedings of the Physical Society. Section A, 1957
- Implications of the Photonuclear Effect inPhysical Review B, 1956
- Neutron Capture Cross SectionsPhysical Review B, 1952