Biosynthesis of Defense-Related Proteins in Transformed Root Cultures of Trichosanthes kirilowii Maxim. var japonicum (Kitam.)
- 1 November 1994
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 106 (3) , 1195-1204
- https://doi.org/10.1104/pp.106.3.1195
Abstract
We have established transformed ("hairy") root cultures from Trichosanthes kirilowii Maxim. var japonicum Kitam. (Cucurbitaceae) and four related species to study the biosynthesis of the ribosome-inactivating protein trichosanthin (TCN) and other root-specific defense-related plant proteins. Stable, fast-growing root clones were obtained for each species by infecting in vitro grown plantlets with Agrobacterium rhizogenes American Type Culture Collection strain 15834. Each species accumulated reproducibly a discrete protein pattern in the culture medium. Analysis of the extracellular proteins from T. kirilowii var japonicum root cultures showed differential protein accumulation in the medium during the time course of growth in batch cultures. Maximum protein accumulation, approaching 20 micrograms/mL, was observed at mid-exponential phase, followed by a degradation of a specific protein subset that coincided with the onset of stationary phase. Two major extracellular proteins and one intracellular protein, purified by ion-exchange and reverse-phase high-performance liquid chromatography, were identified as class III chitinases (EC 3.2.1.14) based on N-terminal amino acid sequence and amino acid composition homologies with other class III chitinases. The Trichosanthes chitinases also showed reactivity with a cucumber class III chitinase antiserum and chitinolytic activity in a glycol chitin gel assay. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analysis of intracellular proteins showed that normal and transformed T. kirilowii var japonicum roots accumulated only low levels of TCN (approximately 0.5% total soluble protein). Storage roots from the plant displayed protein and antigen patterns different from root cultures and produced TCN as the dominant protein. Roots undergoing secondary growth and differentiation exhibited patterns similar to those of storage roots, including increased TCN levels, indicating that high production of TCN is associated with induction of secondary growth in roots.Keywords
This publication has 24 references indexed in Scilit:
- A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activityThe Plant Journal, 1994
- Plant chitinasesThe Plant Journal, 1993
- Transgenic Medicinal Plants: Agrobacterium-Mediated Foreign Gene Transfer and Production of Secondary MetabolitesJournal of Natural Products, 1992
- A New Family of Plant Antifungal ProteinsMolecular Plant-Microbe Interactions®, 1991
- Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation.Plant Cell, 1990
- Crown Gall Disease and Hairy Root DiseasePlant Physiology, 1990
- Proteinase inhibitor gene families: Strategies for transformation to improve plant defenses against herbivoresBioEssays, 1989
- Characterization of OsmotinPlant Physiology, 1987
- Isolation and partial characterization of two antifungal proteins from barleyBiochimica et Biophysica Acta (BBA) - General Subjects, 1986
- A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye BindingAnalytical Biochemistry, 1976