Abstract
An ideal combination of mechanical and corrosion properties of long-term implants such as joint endoprostheses has yet to be found. Besides being resistant to pitting and crevice attack, which can lead to corrosion fatigue and stress corrosion cracking failures, the implant material must be highly resistant to wear and abrasion. Two cobalt-based alloys, wrought CoNiMoTi and air-cast CoCrMo, were subjected to a number of selected in vitro electrochemically and chemically accelerated corrosion tests in chloride-containing solutions with wrought AISI-316L used as a reference alloy. A limited number of immersion tests in FeCl3 and acidified FeCl3 solutions were also conducted. It is found that the mechanical properties of wrought CoNiCrMoTi alloy qualify it as a substitute for cast CoCrMo alloy and wrought AISI-316L in anchorage shaft production for all types of joint endoprostheses. Wrought CoNiCrMoTi has a higher resistance to fatigue cracking compared with cast CoCrMo and is as resistant to selective corrosion phenomena such as stress corrosion cracking.

This publication has 3 references indexed in Scilit: