Estimation of blood flow distribution in skeletal muscle from inert gas washout

Abstract
A new method is evaluated for the estimation of blood flow-to-volume distribution in skeletal muscle from inert gas washout kinetics. Acetylene washout from the isolated, blood-perfused canine gracilis muscle was measured continuously with a blood gas catheter in combination with a mass spectrometer. The washout curves were transformed to flow-to-volume ratio distributions by means of a 50-compartment model. The algorithm fits the expression for the washout curve derived from the model by a least-squares method with enforced smoothing. The algorithm was evaluated using computer simulations in which artificial washout curves were generated by a multicompartment model with a known flow distribution. A wide range of given flow distributions could be recovered from the simulated data. The data were also analyzed using a linear programming technique. Analysis of the experimental data with the least-squares method showed that there is considerable heterogeneity in the distribution of perfusion in resting gracilis muscle. The distribution is characterized by at least two modes and a single compartment with a very low perfusion-to-volume ratio. Experimental noise made it impossible to obtain feasible flow distributions by means of linear programming.