Modulating viral gene expression by aptamers to RNA structures

Abstract
Oligonucleotides exhibiting a strong affinity and a high specificity for RNA hairpins were obtained by in vitro selection. Such oligomers give rise to loop-loop complexes with the target hairpins: the trans-activation responsive (TAR) element of the Human Immunodeficiency virus-1 (HIV-1) or subdomains of the Hepatitis C virus (HCV) mRNA. Chemically modified derivatives of an antiTAR aptamer were shown to compete out the binding of the viral protein Tat and to selectively inhibit the in vitro TAR-dependent transcription of a reporter gene. In addition, antisense oligomers derived from sequences selected against the domain IIId of the HCV internal ribosome entry site were shown to specifically block translation both in a cell-free assay and in cultured cells.

This publication has 0 references indexed in Scilit: