Proportional Localization System for Anatomical Interpretation of Cerebral Computed Tomograms

Abstract
The existence of individual variations in size and shape of the human brain constitutes a problem for the anatomical interpretation of brain reconstructed images obtained from scanning devices; it is, for example, responsible for most of the inaccuracies in reading CT [computed tomography] scans. One way to account for these variations is to use a proportional localization system. In the 1960s a group of neurosurgeons developed such a system based on 2 pivotal intracerebral structures, the anterior and the posterior commissures; they published an atlas consisting of horizontal, coronal and sagittal brain sections interpreted in the proportional system. The atlas also included standard proportional brain schemas based on anatomical and radiological studies on large numbers of individuals. A target localization experiment is reported that was carried out to determine if this atlas could be used as a reference for a more accurate interpretation of CT and, eventually, of positron emission tomography (PET) and NMR scans. Ten radiopaque small targets were inserted through the skull in the cortex of the 3 cadavers; head CT was performed and the atlas was used for predicting the cortical location of the targets seen on the CT images. The predictions were confirmed. These results strongly support the use of the proportional atlas for the interpretation of CT as well as of PET and NMR scans.

This publication has 1 reference indexed in Scilit: