Atypical Metabolism of Deprenyl and Its Enantiomer, (S)-(+)-N,.alpha.-Dimethyl-N-Propynylphenethylamine, by Cytochrome P450 2D6
- 1 May 1994
- journal article
- Published by American Chemical Society (ACS) in Chemical Research in Toxicology
- Vol. 7 (3) , 286-290
- https://doi.org/10.1021/tx00039a003
Abstract
Debrisoquine 4-hydroxylase is a unique cytochrome P450 that effects oxidation of protonated substrates at sites distal from the basic nitrogen. A basic tenet of the several models that have been proposed for the active site of P450 2D6 is that oxidation occurs at distances of approximately 5 or approximately 7 A from the protonated site. In this study, the metabolism of both stereoisomers of deprenyl, a therapeutically valuable monoamine oxidase B inhibitor, was shown to produce N-demethylation and N-depropargylation of the sole basic nitrogen in the molecule by recombinant cytochrome P450 2D6. N-Demethylation of L-(-)-deprenyl leading to nordeprenyl was favored by approximately 13:1 over N-depropargylation which produced methamphetamine. The Km and kcat values for formation of methamphetamine, the minor metabolite, were 56 +/- 5 microM and 0.63 +/- 0.063 nmol of methamphetamine min-1 (nmol of P450)-1, respectively; the kcat for nordeprenyl formation was approximately 8.2 nmol of nordeprenyl min-1 (nmol of P450)-1. Although these pathways would be the anticipated processes for monoamine oxidases and most cytochrome P450s, this mode of biotransformation is not predicted by current active site models and represents a novel pathway for P450 2D6. Statistical analysis indicates that the therapeutically important L-(-)-isomer was preferentially metabolized [kcat/Km (-)/(+) ratio = 2.66]. Competitive inhibition of deprenyl metabolism by both quinidine and quinine with an approximate 10(3) differential confirms that this metabolic pathway is P450 2D6 mediated.(ABSTRACT TRUNCATED AT 250 WORDS)Keywords
This publication has 0 references indexed in Scilit: