Analogies between Mass-Flux and Reynolds-Averaged Equations

Abstract
In many large-scale models mass-flux parameterizations are applied to prognose the effect of cumulus cloud convection on the large-scale environment. Key parameters in the mass-flux equations are the lateral entrainment and detrainment rates. The physical meaning of these parameters is that they quantify the mixing rate of mass across the thermal boundaries between the cloud and its environment. The prognostic equations for the updraft and downdraft value of a conserved variable are used to derive a prognostic variance equation in the mass-flux approach. The analogy between this equation and the Reynolds-averaged variance equation is discussed. It is demonstrated that the prognostic variance equation formulated in mass-flux variables contains a gradient-production, transport, and dissipative term. In the latter term, the sum of the lateral entrainment and detrainment rates represents an inverse timescale of the dissipation. Steady-state solutions of the variance equations are discussed. Expressio... Abstract In many large-scale models mass-flux parameterizations are applied to prognose the effect of cumulus cloud convection on the large-scale environment. Key parameters in the mass-flux equations are the lateral entrainment and detrainment rates. The physical meaning of these parameters is that they quantify the mixing rate of mass across the thermal boundaries between the cloud and its environment. The prognostic equations for the updraft and downdraft value of a conserved variable are used to derive a prognostic variance equation in the mass-flux approach. The analogy between this equation and the Reynolds-averaged variance equation is discussed. It is demonstrated that the prognostic variance equation formulated in mass-flux variables contains a gradient-production, transport, and dissipative term. In the latter term, the sum of the lateral entrainment and detrainment rates represents an inverse timescale of the dissipation. Steady-state solutions of the variance equations are discussed. Expressio...

This publication has 0 references indexed in Scilit: