Nuclear DNA Amounts in Angiosperms: Progress, Problems and Prospects

Abstract
Background The nuclear DNA amount in an unreplicated haploid chromosome complement (1C-value) is a key diversity character with many uses. Angiosperm C-values have been listed for reference purposes since 1976, and pooled in an electronic database since 1997 (http://www.kew.org/cval/homepage). Such lists are cited frequently and provide data for many comparative studies. The last compilation was published in 2000, so a further supplementary list is timely to monitor progress against targets set at the first plant genome size workshop in 1997 and to facilitate new goal setting. • Scope The present work lists DNA C-values for 804 species including first values for 628 species from 88 original sources, not included in any previous compilation, plus additional values for 176 species included in a previous compilation. • Conclusions 1998–2002 saw striking progress in our knowledge of angiosperm C-values. At least 1700 first values for species were measured (the most in any five-year period) and familial representation rose from 30 % to 50 %. The loss of many densitometers used to measure DNA C-values proved less serious than feared, owing to the development of relatively inexpensive flow cytometers and computer-based image analysis systems. New uses of the term genome (e.g. in ‘complete’ genome sequencing) can cause confusion. The Arabidopsis Genome Initiative C-value for Arabidopsis thaliana (125 Mb) was a gross underestimate, and an exact C-value based on genome sequencing alone is unlikely to be obtained soon for any angiosperm. Lack of this expected benchmark poses a quandary as to what to use as the basal calibration standard for angiosperms. The next decade offers exciting prospects for angiosperm genome size research. The database (http://www.kew.org/cval/homepage) should become sufficiently representative of the global flora to answer most questions without needing new estimations. DNA amount variation will remain a key interest as an integrated strand of holistic genomics.