A Comparison of Satellite and In Situ–Based Sea Surface Temperature Climatologies

Abstract
The purpose of this study is to present a satellite-derived sea surface temperature (SST) climatology based on Pathfinder Advanced Very High Resolution Radiometer (AVHRR) data and to evaluate it and several other climatologies for their usefulness in the determination of SST trends. The method of evaluation uses two long-term observational collections of in situ SST measurements: the 1994 World Ocean Atlas (WOA94) and the Comprehensive Ocean–Atmosphere Data Set (COADS). Each of the SST climatologies being evaluated is subtracted from each raw SST observation in WOA94 and COADS to produce several separate long-term anomaly datasets. The anomaly dataset with the smallest standard deviation is assumed to identify the climatology best able to represent the spatial and seasonal SST variability and therefore be most capable of reducing the uncertainty in SST trend determinations. The satellite SST climatology was created at a resolution of 9.28 km using both day and night satellite fields generated wit... Abstract The purpose of this study is to present a satellite-derived sea surface temperature (SST) climatology based on Pathfinder Advanced Very High Resolution Radiometer (AVHRR) data and to evaluate it and several other climatologies for their usefulness in the determination of SST trends. The method of evaluation uses two long-term observational collections of in situ SST measurements: the 1994 World Ocean Atlas (WOA94) and the Comprehensive Ocean–Atmosphere Data Set (COADS). Each of the SST climatologies being evaluated is subtracted from each raw SST observation in WOA94 and COADS to produce several separate long-term anomaly datasets. The anomaly dataset with the smallest standard deviation is assumed to identify the climatology best able to represent the spatial and seasonal SST variability and therefore be most capable of reducing the uncertainty in SST trend determinations. The satellite SST climatology was created at a resolution of 9.28 km using both day and night satellite fields generated wit...