Surfactant-Directed Synthesis and Optical Properties of One-Dimensional Plasmonic Metallic Nanostructures
- 1 May 2005
- journal article
- Published by Springer Nature in MRS Bulletin
- Vol. 30 (5) , 349-355
- https://doi.org/10.1557/mrs2005.97
Abstract
One-dimensional metallic nanostructures such as nanorods and nanowires are of tremendous interest for electronic, sensing, and catalytic applications. Shape anisotropy introduces new optical properties in gold and silver nanoparticles, such as longitudinal plasmon resonance bands in the visible and near-IR portion of the spectrum. Different approaches employed for the shape-controlled synthesis of silver and gold nanocrystals include chemical, electrochemical, and physical methods. The chemical route for the synthesis of nanorods and nanowires, in which metal salts are reduced in an aqueous solution, is one of the most widely used methods. This route commonly employs a surfactant as the directing agent to introduce asymmetry in the nanocrystal shape. Variation in the concentration of precursor salt and the surfactant, the nature of the surfactant, the nature and concentration of reducing agents, the presence of external salts, and the pH of the reaction solution all affect nanocrystal shape, dimension, and yield. The size and shape of the nanocrystals affect the position of the plasmon bands, which in turn has been widely used in surface-enhanced spectroscopies that include both Raman and fluorescence. The aqueous, surfactant-directed route also promises the synthesis of more complex nanostructures with additional desirable properties.Keywords
This publication has 51 references indexed in Scilit:
- Colloidal nanocrystal heterostructures with linear and branched topologyNature, 2004
- Seeded High Yield Synthesis of Short Au Nanorods in Aqueous SolutionLangmuir, 2004
- Electric‐Field‐Directed Growth of Gold Nanorods in Aqueous Surfactant SolutionsAdvanced Functional Materials, 2004
- Single Molecule Raman Spectroscopy at the Junctions of Large Ag NanocrystalsThe Journal of Physical Chemistry B, 2003
- Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth MethodChemistry of Materials, 2003
- Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant TemplateAdvanced Materials, 2001
- Annealing Process of Anisotropic Copper Nanocrystals. 2. RodsLangmuir, 2000
- Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag NanocrystalsJournal of the American Chemical Society, 1999
- Formation and Morphology of Calcium Sulfate Nanoparticles and Nanowires in Water-in-Oil MicroemulsionsLangmuir, 1999
- Reverse Micelle Based Formation of BaCO3 NanowiresThe Journal of Physical Chemistry B, 1997