Blind image deconvolution

Abstract
The goal of image restoration is to reconstruct the original scene from a degraded observation. This recovery process is critical to many image processing applications. Although classical linear image restoration has been thoroughly studied, the more difficult problem of blind image restoration has numerous research possibilities. We introduce the problem of blind deconvolution for images, provide an overview of the basic principles and methodologies behind the existing algorithms, and examine the current trends and the potential of this difficult signal processing problem. A broad review of blind deconvolution methods for images is given to portray the experience of the authors and of the many other researchers in this area. We first introduce the blind deconvolution problem for general signal processing applications. The specific challenges encountered in image related restoration applications are explained. Analytic descriptions of the structure of the major blind deconvolution approaches for images then follows. The application areas, convergence properties, complexity, and other implementation issues are addressed for each approach. We then discuss the strengths and limitations of various approaches based on theoretical expectations and computer simulations.