Vascular smooth muscle cells efficiently activate a new proteinase cascade involving plasminogen and fibronectin

Abstract
The plasminogen/plasmin system is involved in vascular wall remodeling after injury, through extracellular matrix (ECM) degradation and proteinase activation. Vascular smooth muscle cells (VSMCs) synthesize various components of the plasminogen/plasmin system. We investigated the conversion of plasminogen into plasmin in primary cultured rat VSMCs. VSMCs efficiently converted exogenous plasminogen into plasmin in a time- and dose-dependent manner. We measured plasmin activity by monitoring the hydrolysis of Tosyl-G-P-R-Mca, a fluorogenic substrate of plasmin. Cell-mediated plasmin activation was associated with the degradation of ECM, as revealed by fibronectin proteolysis. Plasmin also activated a proteinase able to hydrolyze Mca-P-L-G-L-Dpa-A-R-NH2, a fluorogenic substrate of matrix metalloproteinases (MMPs). However, this proteinase was not inhibited by an MMP inhibitor. Furthermore, this proteinase displayed similar biochemical and pharmacological properties to fibronectin-proteinase, a recently identified zinc-dependent metalloproteinase located in the gelatin-binding domain of fibronectin. These results show that VSMCs convert exogenous plasminogen into plasmin in their pericellular environment. By hydrolyzing matrix protein plasmin activates a latent metalloproteinase that differs from MMP, fibronectin-proteinase. This metalloproteinase may participate to vascular wall remodeling, in concert with other proteinases. J. Cell. Biochem. 88: 1188–1201, 2003.