Optimizing ISOCAM data processing using spatial redundancy

Abstract
We present new data processing techniques that allow to correct the main instrumental effects that degrade the images obtained by ISOCAM, the camera on board the Infrared Space Observatory (ISO). Our techniques take advantage of the fact that a position on the sky has been observed by several pixels at different times. We use this information (1) to correct the long term variation of the detector response, (2) to correct memory effects after glitches and point sources, and (3) to refine the deglitching process. Our new method allows the detection of faint extended emission with contrast smaller than 1% of the zodiacal background. The data reduction corrects instrumental effects to the point where the noise in the final map is dominated by the readout and the photon noises. All raster ISOCAM observations can benefit from the data processing described here. These techniques could also be applied to other raster type observations (e.g. ISOPHOT or IRAC on SIRTF).

This publication has 0 references indexed in Scilit: