Genetic and biochemical characterization of corn inbred lines tolerant to the sulfonylurea herbicide primisulfuron

Abstract
Inbred lines of corn (Zea mays L.) have been characterized, which exhibit differential sensitivity to the sulfonylurea herbicide primisulfuron (2-[3-(4,6-bis(di-fluoromethoxy) pyrimidin-2-yl)-ureidosulfonyl]-benzoic acid methylester). When treated postemergence with 160 g a.i. per hectare, inbred 4CO exhibited complete tolerance while inbred 4N5 was killed. The F1 hybrid 4C0 x 4N5 was uniformly tolerant indicating dominance of the tolerance trait. The field observations correlated with laboratory tests in which seedling root growth was measured. Based on IC50, inbred 4CO was more than ten times more tolerant than inbred 4N5. In the F2 and F3 generations, a 3∶1 segregation of tolerant and sensitive individuals was observed, consistent with tolerance being inherited as a single dominant trait. Backcrosses of heterozygous F1 plants with the sensitive parent (4N5) yielded progeny that segreated at the expected 1∶1 ratio. Backcrosses with 4C0 yielded tolerant offspring only. Inhibition characteristics of acetohydroxyacid synthase (AHAS; E.C. 4.1.3.18) were determined. The enzymes from both inbreds and their F1 hybrid were equally sensitive and strongly inhibited by primisulfuron (IC50: 7 nM). The fate of 14C-labeled primisulfuron in seedling tissues of inbred 4C0 and the hybrid, 4C0 x 4N5, indicated rapid metabolism with a half-life (t 1/2) of approximately 3 h. On the other hand, the herbicide-sensitive inbred 4N5 was considerably slower to metabolize primisulfuron (t 1/2 >24 h). These data indicate that differential metabolism is the mechanism of tolerance to the sulfonylurea herbicide primisulfuron in tolerant corn.