Novel Superuniversal Behavior of a Random-Walk Model

Abstract
A model of interacting random walks is proposed in which each new site visited has a weight factor p. For 1<~p<~, the model interpolates between purely random walks and self-avoiding walks. When 0<p<1, the model describes attracting random walks (and also noninteracting random walks on a lattice with static traps), and shares some of the intriguing features of random walks on percolation fractals—e.g, dimension-independent exponents.

This publication has 9 references indexed in Scilit: