On K3 surfaces with large Picard number
- 1 February 1984
- journal article
- Published by Springer Nature in Inventiones Mathematicae
- Vol. 75 (1) , 105-121
- https://doi.org/10.1007/bf01403093
Abstract
No abstract availableThis publication has 10 references indexed in Scilit:
- Every K3 surface is K hlerInventiones Mathematicae, 1983
- A simple proof of the surjectivity of the period map of K3 surfacesmanuscripta mathematica, 1981
- On a certain decomposition of $2$-dimensional cycles on a product of two algebraic surfacesProceedings of the Japan Academy, Series A, Mathematical Sciences, 1981
- A Torelli theorem for Kähler-Einstein K3 surfacesLecture Notes in Mathematics, 1981
- Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfacesInventiones Mathematicae, 1980
- A note on the Tate conjecture for $K3$ surfacesProceedings of the Japan Academy, Series A, Mathematical Sciences, 1980
- On Singular K3 SurfacesPublished by Cambridge University Press (CUP) ,1977
- On the Torelli problem for kählerian $K-3$ surfacesAnnales Scientifiques de lʼÉcole Normale Supérieure, 1975
- On the Structure of Compact Complex Analytic Surfaces, IAmerican Journal of Mathematics, 1964
- Klassenzahlen indefiniter quadratischer Formen in drei oder mehr VeränderlichenArchiv der Mathematik, 1956