Intracellular divalent cations block smooth muscle K+ channels.

Abstract
The patch-clamp technique was used to examine the sensitivity of delayed rectifier K+ channels to changes in intracellular divalent cations (Mg2+ and Ca2+). During voltage-step and ramp depolarizations, a delayed rectifier K+ current (IK(dr)) was identified in renal, pulmonary, coronary, and colonic smooth muscle cells as a low-noise outward current that activated near -40 mV, was sensitive to 4-aminopyridine (4-AP), and was insensitive to charybdotoxin. During whole-cell voltage-clamp experiments in each of the cell types, the 4-AP-sensitive IK(dr) was significantly less in cells dialyzed with 10 mM Mg2+ as compared with cells in which no Mg2+ was added to the internal dialysis solution (P < or = .05, n > or = 4). In coronary artery cells, 100 microM 2-(2-aminoethyl)pyridine (an H1 receptor agonist) or 10 microM ryanodine, agents that cause an increase in [Ca2+]i, also caused a significant reduction of the 4-AP-sensitive IK(dr) similar to that produced by Mg2+. 4-AP (5 mM) significantly depolarized singl...

This publication has 0 references indexed in Scilit: