Effect of ductility on the fatigue behavior of epoxy resins
- 1 February 1986
- journal article
- research article
- Published by Wiley in Polymer Engineering & Science
- Vol. 26 (4) , 274-284
- https://doi.org/10.1002/pen.760260403
Abstract
The effect of ductility on fatigue behavior was studied using two DGEBA‐based (diglycidyl ether of bisphenol A) epoxies: a ductile Epon 815/Versamid 140 and a brittle Epon 828/Epon Z. Failure modes were different although normalized stress‐life relations were similar for both resins. Two competing failure mechanisms were identified: viscoelastic creep, and nucleation and coalescence into a main crack of microcracks. No signs of crazing or fibrillation were detected. The plastic elongation during fatigue was larger in Epon 815/Versamid 140. Fracture sources showed cracked material surrounded by a region of stable growth of the main crack. In the brittle Epon 828/Epon Z cracked material was scarce and the crack initiation region was clean, especially at high stress levels. Discontinuous crack growth bands and striations were seen in the stable crack growth regions. During unstable propagation the crack advanced at different levels joined by deep cleavage steps. Branching of the main crack occurred only in the brittle resin at the final stage of propagation.Keywords
This publication has 13 references indexed in Scilit:
- Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studiesPolymer, 1983
- Tensile deformation and failure processes of amine-cured epoxiesPolymer, 1982
- Internal fracture of notched epoxy resinsPolymer, 1982
- The mechanical properties of epoxy resinsJournal of Materials Science, 1980
- The mechanical properties of epoxy resinsJournal of Materials Science, 1980
- Tensile, impact and fatigue behavior of an amine‐cured epoxy resinPolymer Engineering & Science, 1978
- Fatigue failure in graphite fibre and glass fibre-polymer compositesJournal of Materials Science, 1975
- Fatigue crack propagation in an epoxy polymerEngineering Fracture Mechanics, 1974
- Delayed yielding of epoxy resin. II. Behavior under constant stressJournal of Applied Polymer Science, 1967
- Delayed yielding of epoxy resin under tension, compression, and flexure. I. Behavior under constant strain rateJournal of Applied Polymer Science, 1967