Confinement of a liquid crystal to small droplets and its effect on nuclear magnetic relaxation

Abstract
The spatial dependence of the orientation of the molecular director and of the nematic order parameter is obtained by minimization of the Landau–de Gennes free energy of the nematic liquid crystal confined in a spherical droplet. Special attention is given to the vicinity of the nematic–isotropic transition. The influence of the resulting nematic structure, large liquid crystal–polymer interface and restricted molecular diffusion on the nuclear magnetic relaxation is analysed. The translationally-induced molecular reorientation and the liquid crystal–polymer cross relaxation are discussed in particular. The possibility of an indirect study of the molecular anchoring on the polymer surface is demonstrated.