Abstract
The adhesion properties of polymers are known to be influenced by both intermolecular forces operative at the interface and the rheological history of both bonding and unbonding. Recent adsorption and viscoelastic theories of adhesion and cohesion are implemented in a comprehensive examination of these phenomena. Eight peel force “master curves” extending over 14 decades of reduced rate and representing glassy state to flow region rheology are superimposed to provide a composite response envelope. Each master curve represents rate-temperature reduced adhesion of an alkyl acrylate adhesive (γc = 26 dyne/cm) to substrates ranging from low adhesion fluorinated polymers (γc = 15 to 17 dyne/cm) to polar poly-amide surfaces (γc = 45 dyne/cm) and glass. The rate dependent transition from interfacial to cohesive failure, a subject not treated by adsorption theory, is shown to be coincident with the onset of entanglement slippage within the polymeric adhesive. Thermodynamic criteria of polymer adhesion are shown to be applicable only to the flow region of polymeric response. This study indicates that measured surface tensions or calculated surface energies of polymeric solids do not properly account for the contributions of three dimensional network structure of the polymeric bulk phase to its total work of cohesion. Evidence of true interfacial failure of a polymer-polymer bond is supported by critical surface tension measurements.