Oxygen Stoichiometry and the High Tc Superconducting Oxides

Abstract
Oxide compounds have been extensively studied through the years because they exhibit a broad spectrum of electrical, magnetic, and optical properties providing both scientific and technological interest. Most oxides are insulators, but a few of them (e.g., LiTi2O4 or BaPb1−x BixO3 show metallic conductivity and even superconductivity at low temperatures. The discovery of superconductivity at 35 K by Bednorz and Müller in the cuprate La-Ba-Cu-O system prompted the search for other high Tc compounds among this oxide family. Superconductivity above liquid nitrogen was then rapidly achieved with the Y-Ba-Cu-O system (Tc=90 K) and subsequently, with the Bi-Sr-Ca-Bu-O and Tl-Ba-Ca-Cu-O systems, Tc was raised to 110 K and then 125 K.A common feature of these new high Tc cuprates is that they belong to the large family of materials, termed perovskites, which have been studied over the years because of their ability to absorb or lose oxygen reversibly (i.e., for their nonstoichiometry in oxygen). It had been previously established in the field of superconductivity that Tc is extremely sensitive to compositional stoichiometry.