Cell-free cloning using φ29 DNA polymerase
- 14 November 2005
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 102 (48) , 17332-17336
- https://doi.org/10.1073/pnas.0508809102
Abstract
We describe conditions for rolling-circle amplification (RCA) of individual DNA molecules 5–7 kb in size by >109-fold, using φ29 DNA polymerase. The principal difficulty with amplification of small amounts of template by RCA using φ29 DNA polymerase is “background” DNA synthesis that usually occurs when template is omitted, or at low template concentrations. Reducing the reaction volume while keeping the amount of template fixed increases the template concentration, resulting in a suppression of background synthesis. Cell-free cloning of single circular molecules by using φ29 DNA polymerase was achieved by carrying out the amplification reactions in very small volumes, typically 600 nl. This procedure allows cell-free cloning of individual synthetic DNA molecules that cannot be cloned in Escherichia coli, for example synthetic phage genomes carrying lethal mutations. It also allows cell-free cloning of genomic DNA isolated from bacteria. This DNA can be sequenced directly from the φ29 DNA polymerase reaction without further amplification. In contrast to PCR amplification, RCA using φ29 DNA polymerase does not produce mutant jackpots, and the high processivity of the enzyme eliminates stuttering at homopolymer tracts. Cell-free cloning has many potential applications to both natural and synthetic DNA. These include environmental DNA samples that have proven difficult to clone and synthetic genes encoding toxic products. The method may also speed genome sequencing by eliminating the need for biological cloning.Keywords
This publication has 15 references indexed in Scilit:
- Massively parallel sequencingNature, 2005
- Genome sequencing in microfabricated high-density picolitre reactorsNature, 2005
- Usefulness of repeated GenomiPhi, a phi29 DNA polymerase-based rolling circle amplification kit, for generation of large amounts of plasmid DNABiomolecular Engineering, 2005
- Exploring whole genome amplification as a DNA recovery tool for molecular genetic studies.2005
- DNA Replication FidelityJournal of Biological Chemistry, 2004
- Generating a synthetic genome by whole genome assembly: φX174 bacteriophage from synthetic oligonucleotidesProceedings of the National Academy of Sciences, 2003
- Genomic analysis of uncultured marine viral communitiesProceedings of the National Academy of Sciences, 2002
- Rapid Amplification of Plasmid and Phage DNA Using Phi29 DNA Polymerase and Multiply-Primed Rolling Circle AmplificationGenome Research, 2001
- The Genome Sequence of Drosophila melanogasterScience, 2000
- In situ localized amplification and contact replication of many individual DNA moleculesNucleic Acids Research, 1999