Forced translational vibrations of 90° domain walls and the dielectric dispersion in ferroelectric ceramics
- 15 September 1993
- journal article
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 74 (6) , 4105-4112
- https://doi.org/10.1063/1.354457
Abstract
A theory of collective translational vibrations of 90° domain walls (DWs) in ferroelectricceramics is presented. Vibrational motions of DWs forming a regular domain structure of a representative grain are assumed to be completely correlated but independent of DW oscillations in other grains. A dynamic mechanical stress field appearing in a ceramic because of DW vibrations is calculated. In contrast to former studies, this calculation takes into account effects due to the lagging of sound waves emitted by oscillating DWs and gives a general expression for the dynamic mechanical restoring force acting on DWs. From this expression we derive the equation of sustained forced DW vibrations in an oscillating external electric field that is valid for a wide frequency range including microwave frequencies. A general solution of this equation is found, which enables us to compute numerically the dependencies of amplitude and phase of DW vibrations on the frequency ω of the applied electric field. It is shown that in the low‐frequency range ω<ω*=c t /g (c t =velocity of transverse sound wave, g=grain size) the general equation of DW vibrations can be reduced to a simplified equation that includes the static restoring force, the inertial reaction, and the radiation reaction self‐force of the DWs emitting sound waves. Analytic expressions are derived for the DW effective mass and for the factors characterizing the static restoring force and the radiation reaction. The contribution of DW vibrations to the complex dielectric constants of ferroelectricceramics is calculated. It is predicted that at very high frequencies ω≫ω* the DW contribution to the real part of permittivity strongly decreases due to clamping of DWs. In this frequency range a peak of dielectric losses should also arise being caused by the emission of sound waves from oscillating DWs. It is emphasized that the above effects can be correctly described on the base of the general equation of DW vibrations only.This publication has 21 references indexed in Scilit:
- Theory of the banded domain structure in coarse-grained ferroelectric ceramicsFerroelectrics, 1992
- Force constant and effective mass of 90° domain walls in ferroelectric ceramicsJournal of Applied Physics, 1991
- The role of 90° domain wall displacements in forming physical properties of perovskite ferroelectric ceramicsFerroelectrics Letters Section, 1991
- Twin bands in martensites: Statics and dynamicsPhysical Review B, 1991
- The effect of 90° domain wall displacements on piezoelectric and dielectric constants of perovskite ferroelectric ceramicsFerroelectrics, 1990
- Dynamics of twin boundaries in martensitesPhysical Review Letters, 1987
- 90°-domain wall relaxation in tetragonally distorted ferroelectric ceramicsFerroelectrics, 1987
- Dielectric losses in ferroelectric ceramics produced by domain-wall motionJournal of Applied Physics, 1978
- Relaxation of 90° Domain Walls of BaTiO3 and Their Equation of MotionJournal of the Physics Society Japan, 1964
- Domain Boundary Motion in Ferroelectric Crystals and the Dielectric Constant at High FrequencyPhysical Review B, 1951