Non-linear Markov Chain Monte Carlo

Abstract
In this paper we introduce a class of non-linear Markov Chain Monte Carlo (MCMC) methods for simulating from a probability measure π. Non-linear Markov kernels (e.g. Del Moral (2004)) can be constructed to admit π as an invariant distribution and have typically superior mixing properties to ordinary (linear) MCMC kernels. However, such non-linear kernels often cannot be simulated exactly, so, in the spirit of particle approximations of Feynman-Kac formulae (Del Moral 2004), we construct approximations of the non-linear kernels via Self-Interacting Markov Chains (Del Moral & Miclo 2004) (SIMC). We present several non-linear kernels and investigate the performance of our approximations with some simulations.

This publication has 0 references indexed in Scilit: