G-Protein-Coupled Receptor 1, G-Protein Gα-Subunit 1, and Prephenate Dehydratase 1 Are Required for Blue Light-Induced Production of Phenylalanine in Etiolated Arabidopsis
- 13 January 2006
- journal article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 140 (3) , 844-855
- https://doi.org/10.1104/pp.105.071282
Abstract
Different classes of plant hormones and different wavelengths of light act through specific signal transduction mechanisms to coordinate higher plant development. A specific prephenate dehydratase protein (PD1) was discovered to have a strong interaction with the sole canonical G-protein Galpha-subunit (GPA1) in Arabidopsis (Arabidopsis thaliana). PD1 is a protein located in the cytosol, present in etiolated seedlings, with a specific role in blue light-mediated synthesis of phenylpyruvate and subsequently of phenylalanine (Phe). Insertion mutagenesis confirms that GPA1 and the sole canonical G-protein-coupled receptor (GCR1) in Arabidopsis also have a role in this blue light-mediated event. In vitro analyses indicate that the increase in PD1 activity is the direct and specific consequence of its interaction with activated GPA1. Because of their shared role in the light-mediated synthesis of phenylpyruvate and Phe, because they are iteratively interactive, and because activated GPA1 is directly responsible for the activation of PD1; GCR1, GPA1, and PD1 form all of or part of a signal transduction mechanism responsible for the light-mediated synthesis of phenylpyruvate, Phe, and those metabolites that derive from that Phe. Data are also presented to confirm that abscisic acid can act through the same pathway. An additional outcome of the work is the confirmation that phenylpyruvate acts as the intermediate in the synthesis of Phe in etiolated plants, as it commonly does in bacteria and fungi.Keywords
This publication has 61 references indexed in Scilit:
- Differential accumulation of maysin and rhamnosylisoorientin in leaves of high‐altitude landraces of maize after UV‐B exposurePlant, Cell & Environment, 2005
- Ozone foliar symptoms in woody plant species assessed with ultrastructural and fluorescence analysisNew Phytologist, 2005
- Nondestructive Evaluation of Anthocyanins in Olive (Olea europaea) Fruits by in Situ Chlorophyll Fluorescence SpectroscopyJournal of Agricultural and Food Chemistry, 2005
- The G-Protein-Coupled Receptor GCR1 Regulates DNA Synthesis through Activation of Phosphatidylinositol-Specific Phospholipase CPlant Physiology, 2003
- Genome-Wide Insertional Mutagenesis of Arabidopsis thalianaScience, 2003
- Flavonoid Distribution in Tissues of Phillyrea latifolia L. Leaves as Estimated by Microspectrofluorometry and Multispectral Fluorescence Microimaging¶Photochemistry and Photobiology, 2002
- Plant blue-light receptorsTrends in Plant Science, 2000
- Signal perception, transduction, and gene expression involved in anthocyanin biosynthesisCritical Reviews in Plant Sciences, 1996
- Two Distinct Blue-Light Responses Regulate Epicotyl Elongation in PeaPlant Physiology, 1990
- Nucleotide sequence and transcription of the phenylalanine and tyrosine operons of Escherichia coli K12Journal of Molecular Biology, 1984