Abstract
An analysis of radiative scattering for an arbitrary configuration of neighbouring spheres is presented. The analysis builds upon the previously developed superposition solution, in which the scattered field is expressed as a superposition of vector spherical harmonic expansions written about each sphere in the ensemble. The addition theorems for vector spherical harmonics, which transform harmonics from one coordinate system into another, are rederived, and simple recurrence relations for the addition coefficients are developed. The relations allow for a very efficient implementation of the `order of scattering' solution technique for determining the scattered field coefficients for each sphere.