New role for histamine in interleukin-3-induced proliferation of hematopoietic stem cells

Abstract
This study investigated the effect of histamine generated by murine bone marrow cells in response to IL-3 on one particular biological activity of this growth factor, i.e., triggering of cells forming colonies in spleen (CFU-S) into S phase. Evidence is provided that i) IL-3-induced day-8 CFU-S cell cycling, evaluated by hydroxyurea suicide, is completely abrogated when the binding of histamine to its H2 receptors is blocked by the specific antagonist oxmetidine, whereas cetirizine, a H1 receptor antagonist, is ineffective; and ii) the entry of day-8 CFU-S intoS phase in response to IL-3 is likevise abolished when the histamine synthesis promoted by the growth factor is prevented by α-fluoromethylhistidine, a specific inhibitor of the histamine-forming enzyme, histidine decarboxylase. Similar results are obtained with both drugs, when a progenitor-enriched bone marrow population is used instead of total cells. Furthermore, i.v. injection of recombinant (r)IL-3 results within 2 hr in a substantial increase in bone marrow cell histamine synthesis together with triggering of day-8 CFU-S into cycle, the latter being completely abolished by a simultaneous injection of the H2 histamine receptor antagonist oxmetidine. Thus, our findings support the notion that both in vitro and in vivo the proliferation of early CFU-S in response to IL-3 is modulated by histamine via its H2 receptors. This conclusion is also consistent with the observation that dimaprit, a specific agonist of these receptors not only enhances the sensitivity of day-8 CFU-S to HU after a 2 hr incubation with bone marrow cells but also increases, to the same extent as IL-3, the number of colonies formed in irradiated spleens after a 5 hr pretreatment.