Oscillations in relay systems
- 1 October 1981
- journal article
- research article
- Published by SAGE Publications in Transactions of the Institute of Measurement and Control
- Vol. 3 (4) , 171-184
- https://doi.org/10.1177/014233128100300401
Abstract
This paper surveys the application of a frequency-domain method, initially presented by Tsypkin, and its extensions for the evaluation of free and forced oscillations in relay systems. It is shown that in a single-loop system containing a relay with no dead zone, the solution for a limit cycle is obtained from a single, nonlinear algebraic equation which can be solved graphically in a similar manner to the approximate describing function approach. For a relay with dead zone or other more complicated situations, such as multi-pulse oscillations or systems with multiple relays, more than one nonlinear algebraic equation must be solved to obtain the free or forced oscillation solutions. Details of general computer programs for obtaining these solutions are given. Several solutions can exist, which may correspond to stable or unstable limit cycles, and a necessary and sufficient condition for determining the stability of the oscillations is given.Keywords
This publication has 16 references indexed in Scilit:
- Analysis and design of nonlinear feedback systemsIEE Proceedings D Control Theory and Applications, 1981
- Stability of limit cycles in feedback systems containing a relayIEE Proceedings D Control Theory and Applications, 1981
- On the analysis of two-variable relay control systems with a linear-asymmetric plantInternational Journal of Control, 1976
- Relationships between Tsypkin, Hamel and approximate limit cycle analyses†International Journal of Control, 1975
- A method for the evaluation of limit cyclesInternational Journal of Control, 1975
- Graphical analysis and design of limit cycles in autonomous relay control systems†International Journal of Control, 1974
- A general approach for on-off control systems oscillationsAutomatica, 1970
- Self and forced oscillations in multivariable relay control systemsAutomatica, 1969
- The Determination of Periodic Modes in Relay Systems Using the State Space Approach†International Journal of Control, 1966
- A note on Tsypkin's locusIRE Transactions on Automatic Control, 1962