Random approximation of convex sets*
- 1 September 1988
- journal article
- Published by Wiley in Journal of Microscopy
- Vol. 151 (3) , 211-227
- https://doi.org/10.1111/j.1365-2818.1988.tb04682.x
Abstract
SUMMARY: We consider convex hulls of independent, identically distributed random points, the distribution of which depends in some way on a given convex body. In the first part, we study an i. i. d. sequence of points on the boundary of a smooth convex body K in the plane and assume that their distribution has a positive continuous density with respect to arc length. The rate of the almost sure convergence of the area, perimeter and Hausdorff distance from K of the successive convex hulls of the random points towards the corresponding values of K is investigated. Also random polygons generated by intersecting random supporting halfplanes of K are considered.The second part gives a survey of convex hulls of random points in d‐dimensional convex bodies, with special emphasis on the asymptotic behaviour of the expectations of some geometrically interesting functionals.Keywords
This publication has 60 references indexed in Scilit:
- Convex bodies, economic cap coverings, random polytopesMathematika, 1988
- The convex hull of a random sample inCommunications in Statistics. Stochastic Models, 1987
- Zufallspolygone in konvexen Vielecken.Journal für die reine und angewandte Mathematik (Crelles Journal), 1984
- Gewichtete Volumsmittelwerte von Simplices, welche zufällig in einem konvexen Körper des ℝ gewählt werdenMonatshefte für Mathematik, 1977
- On the mean value of the volume of a random polytope in a convex setArchiv der Mathematik, 1974
- Random points in a simplexPacific Journal of Mathematics, 1974
- On some mean values associated with a randomly selected simplex in a convex setPacific Journal of Mathematics, 1973
- Zufällige konvexe Polyeder imN-dimensionalen euklidischen RaumPeriodica Mathematica Hungarica, 1972
- ZufÄllige konvexe Polygone in einem RinggebietProbability Theory and Related Fields, 1968
- THE COVERING CIRCLE OF A SAMPLE FROM A CIRCULAR NORMAL DISTRIBUTIONBiometrika, 1952