A simulation study of vibrational relaxation of I3in liquids

Abstract
The temperature dependence of the vibrational relaxation of a flexible model of triiodide in a Lennard-Jones solvent (xenon) has been studied using equilibrium molecular dynamics simulations. The internal dynamics of the ion is calculated from a previously published semi-empirical valence bond model with a limited number of basis states. Vibrational decorrelation rates of the symmetric and antisymmetric stretching modes were found from the time correlation functions of the normal coordinate velocities and the vibrational energy relaxation rates from the time correlation functions of the kinetic energy in each mode. The vibrational dephasing rates and the energy relaxation rates decrease slowly as the temperature is lowered and do not show a discontinuity when the fluid solidifies, although the reorientational diffusion rates change rapidly at low temperatures. In order to interpret the results, perturbation theory expressions for the relaxation rates were evaluated for simulations of a rigid model of the ion and found to agree well with the direct observations. These showed that, unusually, both the solvent force and its derivative, the solvent potential curvature, contribute to the dephasing of the symmetric mode. The relevant fluctuation correlation times are very short, which may explain the insensitivity of the vibrational relaxation to the state of the solvent.