Genomic organization and gene expression of the multiple globins in Atlantic cod: conservation of globin-flanking genes in chordates infers the origin of the vertebrate globin clusters
Open Access
- 20 October 2010
- journal article
- Published by Springer Nature in BMC Ecology and Evolution
- Vol. 10 (1) , 315
- https://doi.org/10.1186/1471-2148-10-315
Abstract
The vertebrate globin genes encoding the α- and β-subunits of the tetrameric hemoglobins are clustered at two unlinked loci. The highly conserved linear order of the genes flanking the hemoglobins provides a strong anchor for inferring common ancestry of the globin clusters. In fish, the number of α-β-linked globin genes varies considerably between different sublineages and seems to be related to prevailing physico-chemical conditions. Draft sequences of the Atlantic cod genome enabled us to determine the genomic organization of the globin repertoire in this marine species that copes with fluctuating environments of the temperate and Arctic regions. The Atlantic cod genome was shown to contain 14 globin genes, including nine hemoglobin genes organized in two unlinked clusters designated β5-α1-β1-α4 and β3-β4-α2-α3-β2. The diverged cod hemoglobin genes displayed different expression levels in adult fish, and tetrameric hemoglobins with or without a Root effect were predicted. The novel finding of maternally inherited hemoglobin mRNAs is consistent with a potential role played by fish hemoglobins in the non-specific immune response. In silico analysis of the six teleost genomes available showed that the two α-β globin clusters are flanked by paralogs of five duplicated genes, in agreement with the proposed teleost-specific duplication of the ancestral vertebrate globin cluster. Screening the genome of extant urochordate and cephalochordate species for conserved globin-flanking genes revealed linkage of RHBDF1, MPG and ARHGAP17 to globin genes in the tunicate Ciona intestinalis, while these genes together with LCMT are closely positioned in amphioxus (Branchiostoma floridae), but seem to be unlinked to the multiple globin genes identified in this species. The plasticity of Atlantic cod to variable environmental conditions probably involves the expression of multiple globins with potentially different properties. The interspecific difference in number of fish hemoglobin genes contrasts with the highly conserved synteny of the flanking genes. The proximity of globin-flanking genes in the tunicate and amphioxus genomes resembles the RHBDF1-MPG-α-globin-ARHGAP17-LCMT linked genes in man and chicken. We hypothesize that the fusion of the three chordate linkage groups 3, 15 and 17 more than 800 MYA led to the ancestral vertebrate globin cluster during a geological period of increased atmospheric oxygen content.Keywords
This publication has 62 references indexed in Scilit:
- Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebratesProceedings of the National Academy of Sciences, 2010
- Maternal transfer and transcriptional onset of immune genes during ontogenesis in Atlantic codDevelopmental & Comparative Immunology, 2009
- Organization of a β and α Globin Gene Set in the Teleost Atlantic Cod, Gadus morhuaBiochemical Genetics, 2009
- Large-scale sequence analyses of Atlantic codNew Biotechnology, 2009
- Evaluation of candidate reference genes in Q-PCR studies of Atlantic cod (Gadus morhua) ontogeny, with emphasis on the gastrointestinal tractComparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2009
- Haemoglobin polymorphisms affect the oxygen-binding properties in Atlantic cod populationsProceedings Of The Royal Society B-Biological Sciences, 2008
- The amphioxus genome and the evolution of the chordate karyotypeNature, 2008
- The medaka draft genome and insights into vertebrate genome evolutionNature, 2007
- High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: The role of histidine residues in modulating the strength of the root effectProteins-Structure Function and Bioinformatics, 2006
- Linkage of the β-Like ω-Globin Gene to α-Like Globin Genes in an Australian Marsupial Supports the Chromosome Duplication Model for Separation of Globin Gene ClustersJournal of Molecular Evolution, 2004