Some similarity temperature profiles for the microwave heating of a half-space

Abstract
There is presently considerable interest in the utilisation of microwave heating in areas such as cooking, sterilising, melting, smelting, sintering and drying. In general, such problems involve Maxwell's equations coupled with the heat equation, for which all thermal, electrical and magnetic properties of the material are nonlinear. The heat source arising from microwaves is proportional to the square of the modulus of the electric field intensity, and is known to increase with increasing temperature. In an attempt to find a simple model of microwave heating, we examine here simple transient temperature profiles corresponding to a heat source with spatial exponential decay but increasing with temperature, for which we assume either a power-law dependence or an exponential dependence. The spatial exponential decay is known to apply exactly when the electrical and magnetic properties of the material are assumed constant. A number of transient temperature profiles for this model are examined which arise from the invariance of the governing heat equation under simple one-parameter transformation groups. Some closed analytical expressions are obtained, but in general the resulting ordinary differential equations need to be solved numerically, and extensive numerical results are presented. For both models, these results indicate the appearance of moving fronts.

This publication has 4 references indexed in Scilit: