Abstract
Sea water and sediment samples taken near the coasts of Hyeres bay (France) were used for anionic surfactant titrations with surface and bottom waters and the finest part of sediments. The capacity for surfactant degradation by the ''in situ'' microflora was evaluated. By using a selective plating technique 26 strains able to utilize anionic surfactant were isolated from the selected bacterial communities. Their ability to degrade anionic surfactant was verified according to the biodegradation standard method. Isolated strains were characterized by morphological and physiological properties using API 20 NE micro-method. All tested strains were Gram negative, strictly aerobic, rod or helical shaped. Their weak utilization of phenolic substrates suggests that they degrade preferentially the alkyl chain of the surfactant molecule. Biodegradation was more efficient with bacterial communities rather than with any isolated strains. Such observations indicate that complete mineralization involves several other so far non-isolated strains which complete the degradation initiated by the isolated strains.