Shell-type micromechanical actuator and resonator

Abstract
Dome-shaped radio-frequency micromechanical resonators were fabricated by utilizing the buckling of a prestressed thin polysilicon film. The enhanced rigidity of the dome structure leads to a significant increase of its resonant frequency compared to a flat plate resonator. The shell-type geometry of the structure also provides an imbedded actuation mechanism. Significant out-of plane deflections are actuated by mechanical stress introduced within the plane of the shell. We demonstrate that thermomechanical stress generated by a focused laser beam, or microfabricated resistive heater, provides an effective and fast mechanism to operate the dome as an acoustic resonator in the radio-frequency range. All-optical operation of the shell resonator and an integrated approach are discussed.