Over‐expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR‐independent resistance in Arabidopsis thaliana to Peronospora parasitica
Open Access
- 15 October 2002
- journal article
- Published by Wiley in The Plant Journal
- Vol. 32 (2) , 151-163
- https://doi.org/10.1046/j.1365-313x.2001.01411.x
Abstract
The Arabidopsis thaliana NIM1/NPR1 gene product is required for induction of systemic acquired resistance (SAR) by pathogens, salicylic acid (SA) or synthetic SA analogs. We identified, in a yeast two-hybrid screen, two NIM1/NPR1 interacting proteins, TGA2 and TGA5, which belong to the basic region, leucine zipper (bZIP) family of transcription factors. Both TGA2 and TGA5 strongly interact with NIM1/NPR1 in yeast and in vitro, and recognize the as-1 cis element found within the promoter of several pathogenesis-related genes, such as PR-1. To determine the role TGA2 and TGA5 may play in NIM1/NPR1-mediated disease resistance, we introduced sense and antisense versions of both genes into transgenic Arabidopsis plants. Characterization of TGA2 transgenic plants revealed that inhibition or overexpression of TGA2 does not significantly affect PR-1 expression or induction of SAR after pathogen infection or INA treatment. Surprisingly, all TGA5-antisense transgenic plants produced showed increased accumulation of TGA5 transcripts compared with untransformed control plants, while the TGA5-sense lines showed no significant increase in TGA5 mRNA levels. Interestingly, the high level of TGA5 mRNA in the antisense lines was accompanied by significant resistance to a highly virulent isolate of the oomycete pathogen Peronospora parasitica. Further, resistance was not coupled to accumulation of products from the SAR-linked PR-1 gene following inoculation with P. parasitica or treatment with INA, indicating that these plants express a robust, PR-1-independent resistance mechanism. Resistance was retained when a TGA5-accumulating line was combined genetically with a nim1-1 mutation or nahG (salicylate hydroxylase) transgene, indicating that resistance in these plants is due to an SA and SAR-independent mechanism.Keywords
This publication has 55 references indexed in Scilit:
- Antisense Expression of a Cell Wall-Associated Protein Kinase, WAK4, Inhibits Cell Elongation and Alters MorphologyPlant Cell, 2001
- NPR1 Differentially Interacts with Members of the TGA/OBF Family of Transcription Factors That Bind an Element of the PR-1 Gene Required for Induction by Salicylic AcidMolecular Plant-Microbe Interactions®, 2000
- Salicylic Acid and Disease Resistance in PlantsCritical Reviews in Plant Sciences, 1999
- SYSTEMIC RESISTANCE INDUCED BY RHIZOSPHERE BACTERIAAnnual Review of Phytopathology, 1998
- The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B.Plant Cell, 1997
- Genetic Dissection of Acquired Resistance to DiseasePlant Physiology, 1997
- The Arabidopsis NPR1 Gene That Controls Systemic Acquired Resistance Encodes a Novel Protein Containing Ankyrin RepeatsCell, 1997
- Characterization of aSalicylicAcid-Insensitive Mutant (sai1) ofArabidopsis thaliana, Identified in a Selective Screen Utilizing the SA-Inducible Expression of thetms2GeneMolecular Plant-Microbe Interactions®, 1997
- THE NF-κB AND IκB PROTEINS: New Discoveries and InsightsAnnual Review of Immunology, 1996
- Isolation and characterization of two related Arabidopsis ocs‐element bZIP binding proteinsThe Plant Journal, 1993