Two-dimensional scattered fields: A description in terms of the zeros of entire functions
- 1 December 1982
- journal article
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 23 (12) , 2291-2298
- https://doi.org/10.1063/1.525308
Abstract
A general description of n-dimensional Fourier transforms is given in terms of their complex zero surfaces. The properties of these surfaces are analyzed and then applied to two-dimensional scattered electromagnetic fields in the Fraunhofer region. It is shown that the properties of two-dimensional fields differ inherently from those of one-dimensional fields and that they lead to a reduced ambiguity for object reconstruction from intensity data. A way of estimating this ambiguity is given.Keywords
This publication has 6 references indexed in Scilit:
- Ambiguity of the phase-reconstruction problemOptics Letters, 1980
- On the ambiguity of the image reconstruction problemOptics Communications, 1979
- Source reconstruction from the modulus of the correlation function: a practical approach to the phase problem of optical coherence theory*Journal of the Optical Society of America, 1973
- Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolutionAnnales de l'institut Fourier, 1956
- Solution of Some Problems of Division: Part II. Division by a Punctual DistributionAmerican Journal of Mathematics, 1955
- Fonctions enti res et int grales de Fourier multiplesCommentarii Mathematici Helvetici, 1936