Kinetochore ?memory? of spindle checkpoint signaling in lysed mitotic cells
- 1 June 2000
- journal article
- research article
- Published by Wiley in Cell Motility
- Vol. 46 (2) , 146-156
- https://doi.org/10.1002/1097-0169(200006)46:2<146::aid-cm7>3.0.co;2-3
Abstract
The spindle checkpoint prevents errors in mitosis. Cells respond to the presence of kinetochores that are improperly attached to the mitotic spindle by delaying anaphase onset. Evidence suggests that phosphorylations recognized by the 3F3/2 anti‐phosphoepitope antibody may be involved in the kinetochore signaling of the spindle checkpoint. Mitotic cells lysed in detergent in the absence of phosphatase inhibitors rapidly lose expression of the 3F3/2 phosphoepitope. However, when ATP is added to lysed and rinsed mitotic cytoskeletons, kinetochores become rephosphorylated by an endogenous, bound kinase. Kinetochore rephosphorylation in vitro produced the same differential phosphorylation seen in appropriately fixed living cells. In chromosomes not yet aligned at the metaphase plate, kinetochores undergo rapid rephosphorylation, while those of fully congressed chromosomes are under‐phosphorylated. However, latent 3F3/2 kinase activity is retained at kinetochores of cells at all stages of mitosis including anaphase. This latent activity is revealed when rephosphorylation reactions are carried out for extended times. The endogenous, kinetochore‐bound kinase can be chemically inactivated. Remarkably, a soluble kinase activity extracted from mitotic cells also caused differential rephosphorylation of kinetochores whose endogenous kinase had been chemically inactivated. We suggest that, in vivo, microtubule attachment alters the kinetochore 3F3/2 phosphoprotein, causing it to resist phosphorylation. This kinetochore modification is retained after cell lysis, producing a “memory” of the in vivo phosphorylation state. Cell Motil. Cytoskeleton 46:146–156, 2000Keywords
This publication has 37 references indexed in Scilit:
- KINETOCHORES AND THE CHECKPOINT MECHANISM THAT MONITORS FOR DEFECTS IN THE CHROMOSOME SEGREGATION MACHINERYAnnual Review of Genetics, 1998
- The Human Homologue of Bub3 Is Required for Kinetochore Localization of Bub1 and a Mad3/Bub1-related Protein KinaseThe Journal of cell biology, 1998
- Mammalian p55CDC Mediates Association of the Spindle Checkpoint Protein Mad2 with the Cyclosome/Anaphase-promoting Complex, and is Involved in Regulating Anaphase Onset and Late Mitotic EventsThe Journal of cell biology, 1998
- Cell cycle checkpoints: Arresting progress in mitosisBioEssays, 1997
- Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p.Genes & Development, 1996
- Cut2 proteolysis required for sister-chromatid separation in fission yeastNature, 1996
- Differential expression of a phosphoepitope at the kinetochores of moving chromosomesThe Journal of cell biology, 1993
- Feedback control of mitosis in budding yeastCell, 1991
- S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule functionCell, 1991
- p34cdc2 Kinase is localized to distinct domains within the mitotic apparatusCell Motility, 1989