Quantifying Crystalline Form Composition in Binary Powder Mixtures Using Near-Infrared Reflectance Spectroscopy
- 1 January 2000
- journal article
- Published by Taylor & Francis in Pharmaceutical Development and Technology
- Vol. 5 (2) , 231-246
- https://doi.org/10.1081/pdt-100100538
Abstract
The objectives of this study were to assess the utility of near-infrared reflectance spectroscopy (NIRS) in differentiating crystalline forms of pharmaceutical materials and determine the accuracy of this technique in quantifying crystalline forms of solids in binary mixtures. Various crystalline forms of sulfamethoxazole, sulfathiazole, lactose, and ampicillin, independently characterized with other methods, were analyzed qualitatively and quantitatively. The observed differences in near-infrared (NIR) spectra of crystalline form pairs were interpretable on the basis of the features of their crystalline and molecular structures and mid-infrared spectra. NIR spectra of binary physical mixtures of crystalline form pairs were obtained directly through glass vials over the wavelength range of 1100-2500 nm. The calibration lines were constructed using an inverted least-squares regression method. The ratio of the response of the second derivative of the reflectance spectra at two wavelengths was plotted versus crystal form composition. The correlation coefficients for plots of predicted versus theoretical composition were generally greater than 0.99 and standard errors were all low. Parallel studies comparing the NIRS method to a quantitative x-ray powder diffraction method using sulfamethoxazole and sulfathiazole confirmed the accuracy of the results. Additional NIRS studies were conducted in the 0-10% composition range with ampicillin and sulfamethoxazole. These results indicated that prediction down to the 1% level was possible. This study demonstrates that NIRS can be used as a quantitative physical characterization method, is comparable in accuracy to other techniques, and is capable of detecting low levels of one crystal form in the presence of another.Keywords
This publication has 31 references indexed in Scilit:
- Quantitation of cefepime · 2HCl dihydrate in cefepime · 2HCl monohydrate by diffuse reflectance IR and powder X-ray diffraction techniquesJournal of Pharmaceutical and Biomedical Analysis, 1996
- Interpretive Spectroscopy for Near InfraredApplied Spectroscopy Reviews, 1996
- Classification of Near-Infrared Spectra Using Wavelength Distances: Comparison to the Mahalanobis Distance and Residual Variance MethodsAnalytical Chemistry, 1995
- Near-infrared reflectance spectrometry in the determination of the physical state of primary materials in pharmaceutical productionThe Analyst, 1995
- Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvatesThermochimica Acta, 1995
- Characterization of polymorphs of a new anti-inflammatory drugJournal of Pharmaceutical and Biomedical Analysis, 1993
- A comparison of Fourier transform infrared and near-infrared Fourier transform Raman spectroscopy for quantitative measurements: An application in polymorphismSpectrochimica Acta Part A: Molecular Spectroscopy, 1991
- Uses of Near-Infrared Spectroscopy in Pharmaceutical AnalysisApplied Spectroscopy Reviews, 1987
- Quantitative determination of polymorphic forms in a formulation matrix using the near infra-red reflectance analysis techniqueJournal of Pharmaceutical and Biomedical Analysis, 1987
- The crystal structures of polymorphs I and III of sulphathiazoleActa Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 1972