Self-consistent electronic structure of disordered Fe0.65Ni0.35

Abstract
We present the results of the first ab initio calculation of the electronic structure of the disordered alloy Fe0.65Ni0.35. The calculation is based on the multiple‐scattering coherent‐potential approach (KKR‐CPA) and is fully self‐consistent and spin polarized. Magnetic effects are included within local‐spin‐density functional theory using the exchange‐correlation function of Vosko–Wilk–Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder, whereas the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared to the very structured majority spin density of states. This difference is due to a subtle balance between exchange splitting and charge neutrality.